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Direct Synthesis of Cascaded Quadruplet (CQ) Filters
Ralph Levy,

Abstract-Previous designs for CQ filters have required matrix
rotation operations on the coupling matrix of the canonic form
of the cross-coupled filters. This is a rather awkward and not
entirely satisfactory process since the theory is not general,
requiring the application of equations specific to each order of
filter, and in fact has been developed only as far as even order
10. A new direct CQ synthesis has now been discovered having
no such limitations. It is shown how the synthesis may be carried
out by applying a new equivalent circuit identity to transform a
lumped element filter into a cross-coupled CQ filter.

I. INTRODUCTION

A CQ FILTER CONSISTS OF cascaded groups of 4 cav-
ities or nodes, each with one cross coupling, This is

illustrated by the 8th-order coupling diagram of Fig. 1, which
contains two CQ sections separated by one normal main
coupling, M45. Restrictions on the form of transfer function
for this type of network are well documented, e.g., [2]. In

particular the transmission zeros must be on either the real
or imaginary axes, and no complex transmission zeros are

allowed, The CQ structure possesses the significant advantage
that each CQ section is entirely responsible for producing one
transmission zero. This is not the case for other realizations
such as the well known canonic structure of Fig. 2 where each
cross coupling affects all the transmission zeros, making the
filter more difficult to tune. The simpler tunability of CQ filters
makes them attractive for commercial applications where cost
is a prime consideration.

The most common realization of CQ filters have been as

dual mode cavity filters where the cross couplings across
4 nodes takes place between physically adjacent cavities

as depicted in Fig. 3. Single-moded realizations are becom-
ing popular also, particularly in the form of cross-coupled
combline filters, an example of which is given in Section IV.

Previously the only known analytical (as opposed to numer-
ical) method for designing CQ filters has been by applying
matrix rotations to the canonic form of the network, for which
synthesis techniques exist [1]–[3]. 1 A method for” extracting
CQ sections directly from the transfer function has now been

formulated as described in the following sections.

II. DIRECT CQ SYNTHESIS

The purpose of this section is to demonstrate necessary and
sufficient conditions for the synthesis of a network as a cascade
of CQ sections. Initially the extraction of a CQ section from a
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Coupling diagram of an eighth order CQ filter.
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General canonic form of a cross-coupled filter, n = 8.
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Fig. 3. TE1 In dual mode cavity filter, n = 6.
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Fig. 4. Partial CQ section equivalent to a Brnne or C section.

low pass transfer funcion would seem to be an impossible task
because the CQ section is of such high degree and contains
several independent parameters. Each of the nodes shown in
the example of Fig. 1 has a capacitor to ground as well as main
line and possibly cross couplings. However, the situation is not
as intractable as it might appear since a shunt capacitor may be
extracted from the transfer function, and the remaining portion

of the CQ section is the simpler circuit shown in Fig. 4. The
capacitor at node 4 may be disregarded, being extracted after

the CQ portion has been dealt with.
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Fig.5. Transformation of a lowpass filter into CQ format,(a) LoWpass prototype filter c1 = ~122~1, J12 = @, (b) Flr’st S%e of transformation,(c)
Second stage of&ansformation, (d) Final conversion into CQforrnat: c! = Cl, C.j = (cz+c24)/J?z. C’L = [(c2+c24)/c2]2”~3, (C3 = Jb),

CL = C4 +c2cz4/(cz +C24). J~3= (C’2+c24)/(c2J12), J~4= ‘c24.J12/(c2 +C24).

In Fig. 4, the lines joining the nodes are admittance invert-

ers, and inverters J12 and J34 may be set to unity admittance
without loss of generality. The transfer matrix of this partial
CQ section may be derived as

1/(1 – J14J23)

1 – (w2/Lu:)

[

C2W/J23 j(C2C3w2/J23 – J23)

x j[&42c2@.r2

I

(1)

-( J14J,3 - 1)2]/J23 C3w/J23

where

w: = JlAC@3/[(JlzJz3 – 1) J23]. (2)

This is a matrix of degree 2 in w. The proof that it is
extractable from the overall transfer matrix of the network

follows from the fact that apart from a trivial rotation of the
matrix parameters due to having an odd number of admittance
inverters in the main path and also the inclusion of an ideal
transformer, matrix (1) is exactly that for either a Brune section
or C-section, e.g., [4]. Appropriate extraction techniques for
such sections are well known, and in fact necessary and
sufficient conditions which guarantee that such extractions are
always possible have been published [4]. The direct extraction
process for CQ sections using matrix (1) need not be detiiiled

here since an alternative procedure which requires no new
synthesis programming has been obtained, as described below.

III. DERIVATION OF CQ FILTERS FROM LOWPASS

FILTERS—A NEW NETWORK TRANSFORMATION

In the previous section the existence of a general CQ
synthesis was demonstrated. However, rather than having to
write a special synthesis program, it has been convenient to
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Fig. 6. Lumped element Bnme or C-section. Cz ~24 +CZ4 CA +c4 C’z = O.

‘r--l’
transform simple cascaded lowpass filters of defined topology
into CQ form using an interesting circuit transformation.

As an example, the form of circuit to be transformed is
shown in Fig. 5(a) for the 8th degree case. This has a 4th
ordered attenuation pole at infinity and a pair of second degree
finite poles, giving total degree 8. The synthesis of this filter

was performed using an existing program for the synthesis
of generalized lowpass filters, but may be carried out also
using the commercially available program FILSYN [5]. Such

programs commence from the generalized rational Chebyshev
insertion loss function

L = l+ E21f(Z)12 (3)

as expressed in terms of the transformed variable Z which is
related to the normal complex frequency variable s by

z = /1 + 1/s2. (4)

Further details of the formation of such network parameters
as the driving point impedances and other network functions
required for filter synthesis are given in [3], which also lists
other relevant references. The synthesis employs extractions of
the various circuit elements expressed directly in the complex
variable, with the elements being extracted in the appropriate
order to give a circuit in the form shown by the typical example
of Fig. 5(a).

The first step in the transformation of this circuit into a CQ
filter is to replace each simple series inductor by a cascade of a
shunt capacitor flanked on each side by admittance inverters,

as shown in Fig. 5(b). At this stage it is convenient also to
incorporate the nonunity terminating resistance into one of the
inverters. A similar transformation may be performed in the
case of the inductors within the pole sections as shown in
Fig. 5(c). Here we make use of the identity

where

C=L. (6)

1......-L
1 4

(b)

Fig. 7. (a) Lumped element n = 4 filter: G = 1.2. LIZ = 0.767311,
CZO = 1.04060, LM = 0.991995, (& = 0.252017, (pole & = 2.0),
C40 = 0.707107, (b) CQ realization: Cl = C4 = 0.920773,
C’z = C3 = 1.380064. J12 = J34 = 1, J14 = –0.166702,
Jz3 = 1.076724.

(The exact equality of (6) would be modified by a factor
J2 if the immittance inverters were of admittance J rather
than unity, i.e. C = J2L, giving the correct dimensional
relationship).

It is very important to have one of the inverters in (5)
have negative admittance to avoid a 1: – 1 transformer. In

the case of the single series inductors of step (a) to (b) such

transformers are of no consequence since they do not affect

the amplitude of the transfer function.

The circuit section between nodes 1 and 4 of Fig. 5(c) has

the admittance matrix

[

Cls –J12 o 0

–J12 (C2 + C24)S –1 –C24S

o –1 Css

1

(7)

o – C24S 1 (C241 C~)S

where the complex frequency variables is used rather than jiw.
In order to eliminate the 24 coupling row 2 is multiplied by

C24/(Cz + C24) and added to row 4, and a similar operation
applied to columns 2 and 4. The J12 entries are made unity
by multiplying row 2 and Colttrnn 2 by 1/ JH, giving the
equivalent admittance matrix

c1 s –1 o –CMJU

(c2+c24)s

(C,+C,4)

–1
~

J:2 J12 o

0
~
JIZ C3S

1 – (c,%,.) “

–CMJ12
(c,+C,,) 0 1 – (c,%.) (

C4 + &s
)

(8)
The process of making the off-diagonal elements 12 and 34
equal to – 1 is completed by multiplying row and column 3
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Fig. 8. (a) Lumped element n = 12 fdte~ G = 1.2, L12 = 0.839339, L20 = 1.124050, L24 = 0.657756, CZ4 = 1.149581, (pole .f24 = 1.15),
C40 = 1.542449, L4G = 1.776032, Lr50 = 2.960430, Lt3~ = 3.155535, CGS = –0.646742, (real axis ~GS = 0.70), Cso = 2.954255,
LS, IO = 1.759905, CIO,O = 1.677657, L10,12 = 0.754420, C10,12 = 0.784233, (pole flo,lz = 1.30), Clz,o = 0.473057 (b) CQ reatizatiou:
Cl = 1.007207, Cz = 1,894693, C’3 = 2.691121, CA = 2.110785, C=I = 1.776032. C6 = 2.313688, C7 = 1.927406, CR = 2.1 Z!6731,
C9 = 1.759905, Clll = 2.461989, Cll = 1.624722, CIZ = 1.007519, JIZ = J34 = J4-5 = ~56 = J78 = J89 = .fg,;o = .111,12 = 1,
J14 = –0.553873, J58 = 0.279528, .J9,12 = –0.318577.

by the factor (C2 + C24)/C2. The 23 terms could have been

transformed to unity only by introducing a multiplication fac-

tor to row and column 4 which would change the admittance
looking to the right, an undesirable complication.

The final step is the necessary and rather interesting one

of multiplying row and column 4 by – 1, which gives the 34
terms the correct negative sign and also changes the sign of
the 14 terms. The final matrix is given below, and the resulting

CQ section shown in Fig. 5(d)

(71s

–1
“: “(% ‘2~)

(C,+c,,)s
J12

0 -(y:&l) (Czp’ C3S -1

C’Z4J1Z
(C2+C24)

o –1
(

C4 + &+c&4) s
)

19)

Note that if C24 is positive, corresponding to an attenuation

pole, then the 14 term correctly represents a negative admit-
tance inverter, whereas if C24 is negative, corresponding to

a real axis pole, then the cross coupling inverter is positive.
Note that the synthesis of the lowpass prototype filter does
indeed produce negative element values for the capacitor C24
in the case of C-sections where the transmission zero lies on

the real axis of the complex frequency plane, a fact which

may be verified by carrying out the synthesis using Filsyn [5]

for example.
The transformation is applied to each pole-producing section

of the original lowpass filter, e.g., to nodes numbered 5, 6, and
8 in Fig. 5(b), resulting in the complete CQ filter.

At this point it is interesting to return to consideration of
the basic C or Brune section of Fig. 4 which is the same as
Fig. 5(d) with C{ and Cj set to zero. The condition that the

Pi network of Fig. 6 is a CIBrune section is given by

Czcze + C24C4 + C4C2 = o (lo)

which is the well-known cyclic double-product zero condition
on the three capacitors. This is easily demonstrated for exam-
ple by examining the expressions for the capacitors given in
[4, (20)].

Application of (10) to the equation for C: given in Fig. 5(d)
leads to

c; = cd+ c2c24/(c2 + C24) = o (11)

Cj may be considered to be pre-extracted and may be set

to zero also. This demonstrates that the circuit of Fig. 4
does indeed satisfy a necessary condition for representing a
CIBrune section.

IV, NUMERICAL AND EXPERIMENTAL RESULTS

The element values have been compared to those obtained
using matrix rotations, with identical results. The theory has
been checked also by direct analysis of the derived CQ
networks.

The first example is the lowest order case of n = 4. The
result for the synthesis of a lowpass filter having a 1.2 VSWR
ripple bandedge at 1 and normalized pole frequency at 2 is

given in Fig. 7(a). Since this is an even-ordered circuit it has
unequal terminating resistors and is physically asymmetric.
Applying the equations for the CQ transformation as given in
Fig. 5 leads to the symmetrical circuit of Fig. 7(b), which is a
particularly gratifying result for the theory.

As stated earlier no CQ filter for even degree Klgher than 10
has been published, and it is interesting now to demonstrate
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Fig.9. Analysis of the n = 12 CQ filter of Fig. 8(b).

such an example for n = 12. The example also has a VSWR
of 1.2 (return loss 20.83 dB), with real frequency (imaginary
axis) poles at +j 1.15 and +j 1.3 plus real axis poles at +0.7.
The latter flattens the group delay over the central portion of

the passband. The normal lumped element filter is shown in
Fig. 8(a), with the conversion to a CQ filter given in Fig. 8(b).
The direct analysis of the CQ circuit of Fig. 8(b) is shown in
Fig. 9, indicating the exact Chebyshev response with the 6
passband zeros in O < w’ <1 and the equiripple response at
the 20.83 dB return loss level. The delay variation over the
central 5070 of the passband is 4’% compared with 18% for
the same filter without the real axis zero.

Transformations of the lowpass prototypes into bandpass
filters have been described extensively in the literature, e.g.,
[1]. A 12-pole CQ filter with pole locations consisting of a
degenerate pair of real frequency poles at +~ 1,4 and real
axis poles at +0.5 has been realized in combline form with
passband edges at 7880 and 8425 MHz. The filter met the
specified rejection specifications of >85 dB below 7700 MHz
and >40 dB above 8520 MHz, with insertion loss of <1 dB
and phase linearity <8° in the 7900--8400 MHz band. The
analysed phase linearity is 6°, which was realized in practice.

V. CONCLUSION

A new synthesis of CQ filters has been demonstrated which
does not rely on conversion of “canonic” type networks using

#- 1 I I

XNSERTION LOSS

L.
rotation matrices, for which only formulas for certain specific

cases have been known. Moreover the new synthesis may
be realized by applying a simple network transformation to
lumped element networks of prescribed topology which may
be derived using existing standard synthesis software.

The paper gives even degree examples of CQ filters up to

12th order (there is no limitation on such order), and it should
be pointed out that the theory is equally applicable to filters
of odd degree.

The theory is easily extended to the synthesis of cascade
trisection (CT) filters where the cross couplings are across
3 nodes. Trisections each realize a pole on one side of the

passband of a bandpass filter, giving general asymmetric
characteristics.
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